Serveur d'exploration sur la détoxication des champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Quantitative real-time PCR (qPCR) detection chemistries affect enumeration of the Dehalococcoides 16S rRNA gene in groundwater.

Identifieur interne : 001957 ( Main/Exploration ); précédent : 001956; suivant : 001958

Quantitative real-time PCR (qPCR) detection chemistries affect enumeration of the Dehalococcoides 16S rRNA gene in groundwater.

Auteurs : Janet K. Hatt [États-Unis] ; Frank E. Löffler

Source :

RBID : pubmed:22200549

Descripteurs français

English descriptors

Abstract

Quantitative real-time PCR (qPCR) commonly uses the fluorogenic 5' nuclease (TaqMan) and SYBR Green I (SG) detection chemistries to enumerate biomarker genes. Dehalococcoides (Dhc) are keystone bacteria for the detoxification of chlorinated ethenes, and the Dhc 16S ribosomal RNA (rRNA) gene serves as a biomarker for monitoring reductive dechlorination in contaminated aquifers. qPCR enumeration of Dhc biomarker genes using the TaqMan or SG approach with the same primer set yielded linear calibration curves over a seven orders of magnitude range with similar amplification efficiencies. The TaqMan assay discriminates specific from nonspecific amplification observed at low template concentrations with the SG assay, and had a 10-fold lower limit of detection of ~3 copies per assay. When applied to Dhc pure cultures and Dhc-containing consortia, both detection methods enumerated Dhc biomarker genes with differences not exceeding 3-fold. Greater variability was observed with groundwater samples, and the SG chemistry produced false-positive results or yielded up to 6-fold higher biomarker gene abundances compared to the TaqMan method. In most cases, the apparent error associated with SG detection resulted from quantification of nonspecific amplification products and was more pronounced with groundwater samples that had low biomarker concentrations or contained PCR inhibitors. Correction of the apparent error using post-amplification melting curve analysis produced 2 to 21-fold lower abundance estimates; however, gel electrophoretic analysis of amplicons demonstrated that melting curve analysis was insufficient to recognize all nonspecific amplification. Upon exclusion of nonspecific amplification products identified by combined melting curve and electrophoretic amplicon analyses, the SG method produced false-negative results compared to the TaqMan method. To achieve sensitive and accurate quantification of Dhc biomarker genes in environmental samples (e.g., groundwater) and avoid erroneous conclusions, the analysis should rely on TaqMan detection chemistry, unless additional analyses validate the results obtained with the SG approach.

DOI: 10.1016/j.mimet.2011.12.005
PubMed: 22200549


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Quantitative real-time PCR (qPCR) detection chemistries affect enumeration of the Dehalococcoides 16S rRNA gene in groundwater.</title>
<author>
<name sortKey="Hatt, Janet K" sort="Hatt, Janet K" uniqKey="Hatt J" first="Janet K" last="Hatt">Janet K. Hatt</name>
<affiliation wicri:level="2">
<nlm:affiliation>School of Civil and Environmental Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, GA 30332, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>School of Civil and Environmental Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, GA 30332</wicri:regionArea>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Loffler, Frank E" sort="Loffler, Frank E" uniqKey="Loffler F" first="Frank E" last="Löffler">Frank E. Löffler</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22200549</idno>
<idno type="pmid">22200549</idno>
<idno type="doi">10.1016/j.mimet.2011.12.005</idno>
<idno type="wicri:Area/Main/Corpus">001A73</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001A73</idno>
<idno type="wicri:Area/Main/Curation">001A73</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001A73</idno>
<idno type="wicri:Area/Main/Exploration">001A73</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Quantitative real-time PCR (qPCR) detection chemistries affect enumeration of the Dehalococcoides 16S rRNA gene in groundwater.</title>
<author>
<name sortKey="Hatt, Janet K" sort="Hatt, Janet K" uniqKey="Hatt J" first="Janet K" last="Hatt">Janet K. Hatt</name>
<affiliation wicri:level="2">
<nlm:affiliation>School of Civil and Environmental Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, GA 30332, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>School of Civil and Environmental Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, GA 30332</wicri:regionArea>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Loffler, Frank E" sort="Loffler, Frank E" uniqKey="Loffler F" first="Frank E" last="Löffler">Frank E. Löffler</name>
</author>
</analytic>
<series>
<title level="j">Journal of microbiological methods</title>
<idno type="eISSN">1872-8359</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Chloroflexi (genetics)</term>
<term>Chloroflexi (isolation & purification)</term>
<term>DNA, Bacterial (chemistry)</term>
<term>Fluorescent Dyes (chemistry)</term>
<term>Fresh Water (microbiology)</term>
<term>Limit of Detection (MeSH)</term>
<term>Organic Chemicals (chemistry)</term>
<term>RNA, Ribosomal, 16S (genetics)</term>
<term>Real-Time Polymerase Chain Reaction (methods)</term>
<term>Taq Polymerase (chemistry)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN bactérien (composition chimique)</term>
<term>ARN ribosomique 16S (génétique)</term>
<term>Chloroflexi (génétique)</term>
<term>Chloroflexi (isolement et purification)</term>
<term>Colorants fluorescents (composition chimique)</term>
<term>Composés chimiques organiques (composition chimique)</term>
<term>Eau douce (microbiologie)</term>
<term>Limite de détection (MeSH)</term>
<term>Réaction de polymérisation en chaine en temps réel (méthodes)</term>
<term>TAQ polymerase (composition chimique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>DNA, Bacterial</term>
<term>Fluorescent Dyes</term>
<term>Organic Chemicals</term>
<term>Taq Polymerase</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>ADN bactérien</term>
<term>Colorants fluorescents</term>
<term>Composés chimiques organiques</term>
<term>TAQ polymerase</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Chloroflexi</term>
<term>RNA, Ribosomal, 16S</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ARN ribosomique 16S</term>
<term>Chloroflexi</term>
</keywords>
<keywords scheme="MESH" qualifier="isolation & purification" xml:lang="en">
<term>Chloroflexi</term>
</keywords>
<keywords scheme="MESH" qualifier="isolement et purification" xml:lang="fr">
<term>Chloroflexi</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Real-Time Polymerase Chain Reaction</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Eau douce</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Fresh Water</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Réaction de polymérisation en chaine en temps réel</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Limit of Detection</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Limite de détection</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Quantitative real-time PCR (qPCR) commonly uses the fluorogenic 5' nuclease (TaqMan) and SYBR Green I (SG) detection chemistries to enumerate biomarker genes. Dehalococcoides (Dhc) are keystone bacteria for the detoxification of chlorinated ethenes, and the Dhc 16S ribosomal RNA (rRNA) gene serves as a biomarker for monitoring reductive dechlorination in contaminated aquifers. qPCR enumeration of Dhc biomarker genes using the TaqMan or SG approach with the same primer set yielded linear calibration curves over a seven orders of magnitude range with similar amplification efficiencies. The TaqMan assay discriminates specific from nonspecific amplification observed at low template concentrations with the SG assay, and had a 10-fold lower limit of detection of ~3 copies per assay. When applied to Dhc pure cultures and Dhc-containing consortia, both detection methods enumerated Dhc biomarker genes with differences not exceeding 3-fold. Greater variability was observed with groundwater samples, and the SG chemistry produced false-positive results or yielded up to 6-fold higher biomarker gene abundances compared to the TaqMan method. In most cases, the apparent error associated with SG detection resulted from quantification of nonspecific amplification products and was more pronounced with groundwater samples that had low biomarker concentrations or contained PCR inhibitors. Correction of the apparent error using post-amplification melting curve analysis produced 2 to 21-fold lower abundance estimates; however, gel electrophoretic analysis of amplicons demonstrated that melting curve analysis was insufficient to recognize all nonspecific amplification. Upon exclusion of nonspecific amplification products identified by combined melting curve and electrophoretic amplicon analyses, the SG method produced false-negative results compared to the TaqMan method. To achieve sensitive and accurate quantification of Dhc biomarker genes in environmental samples (e.g., groundwater) and avoid erroneous conclusions, the analysis should rely on TaqMan detection chemistry, unless additional analyses validate the results obtained with the SG approach.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22200549</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>08</Month>
<Day>14</Day>
</DateCompleted>
<DateRevised>
<Year>2012</Year>
<Month>01</Month>
<Day>31</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1872-8359</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>88</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2012</Year>
<Month>Feb</Month>
</PubDate>
</JournalIssue>
<Title>Journal of microbiological methods</Title>
<ISOAbbreviation>J Microbiol Methods</ISOAbbreviation>
</Journal>
<ArticleTitle>Quantitative real-time PCR (qPCR) detection chemistries affect enumeration of the Dehalococcoides 16S rRNA gene in groundwater.</ArticleTitle>
<Pagination>
<MedlinePgn>263-70</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.mimet.2011.12.005</ELocationID>
<Abstract>
<AbstractText>Quantitative real-time PCR (qPCR) commonly uses the fluorogenic 5' nuclease (TaqMan) and SYBR Green I (SG) detection chemistries to enumerate biomarker genes. Dehalococcoides (Dhc) are keystone bacteria for the detoxification of chlorinated ethenes, and the Dhc 16S ribosomal RNA (rRNA) gene serves as a biomarker for monitoring reductive dechlorination in contaminated aquifers. qPCR enumeration of Dhc biomarker genes using the TaqMan or SG approach with the same primer set yielded linear calibration curves over a seven orders of magnitude range with similar amplification efficiencies. The TaqMan assay discriminates specific from nonspecific amplification observed at low template concentrations with the SG assay, and had a 10-fold lower limit of detection of ~3 copies per assay. When applied to Dhc pure cultures and Dhc-containing consortia, both detection methods enumerated Dhc biomarker genes with differences not exceeding 3-fold. Greater variability was observed with groundwater samples, and the SG chemistry produced false-positive results or yielded up to 6-fold higher biomarker gene abundances compared to the TaqMan method. In most cases, the apparent error associated with SG detection resulted from quantification of nonspecific amplification products and was more pronounced with groundwater samples that had low biomarker concentrations or contained PCR inhibitors. Correction of the apparent error using post-amplification melting curve analysis produced 2 to 21-fold lower abundance estimates; however, gel electrophoretic analysis of amplicons demonstrated that melting curve analysis was insufficient to recognize all nonspecific amplification. Upon exclusion of nonspecific amplification products identified by combined melting curve and electrophoretic amplicon analyses, the SG method produced false-negative results compared to the TaqMan method. To achieve sensitive and accurate quantification of Dhc biomarker genes in environmental samples (e.g., groundwater) and avoid erroneous conclusions, the analysis should rely on TaqMan detection chemistry, unless additional analyses validate the results obtained with the SG approach.</AbstractText>
<CopyrightInformation>Copyright © 2012 Elsevier B.V. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Hatt</LastName>
<ForeName>Janet K</ForeName>
<Initials>JK</Initials>
<AffiliationInfo>
<Affiliation>School of Civil and Environmental Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, GA 30332, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Löffler</LastName>
<ForeName>Frank E</ForeName>
<Initials>FE</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>12</Month>
<Day>19</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>J Microbiol Methods</MedlineTA>
<NlmUniqueID>8306883</NlmUniqueID>
<ISSNLinking>0167-7012</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004269">DNA, Bacterial</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005456">Fluorescent Dyes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009930">Organic Chemicals</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012336">RNA, Ribosomal, 16S</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>163795-75-3</RegistryNumber>
<NameOfSubstance UI="C098022">SYBR Green I</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.7.-</RegistryNumber>
<NameOfSubstance UI="D019914">Taq Polymerase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D041862" MajorTopicYN="N">Chloroflexi</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="Y">isolation & purification</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004269" MajorTopicYN="N">DNA, Bacterial</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005456" MajorTopicYN="N">Fluorescent Dyes</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005618" MajorTopicYN="N">Fresh Water</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057230" MajorTopicYN="N">Limit of Detection</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009930" MajorTopicYN="N">Organic Chemicals</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012336" MajorTopicYN="N">RNA, Ribosomal, 16S</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060888" MajorTopicYN="N">Real-Time Polymerase Chain Reaction</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019914" MajorTopicYN="N">Taq Polymerase</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2011</Year>
<Month>10</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2011</Year>
<Month>12</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2011</Year>
<Month>12</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>12</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>12</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>8</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22200549</ArticleId>
<ArticleId IdType="pii">S0167-7012(11)00431-3</ArticleId>
<ArticleId IdType="doi">10.1016/j.mimet.2011.12.005</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Géorgie (États-Unis)</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Loffler, Frank E" sort="Loffler, Frank E" uniqKey="Loffler F" first="Frank E" last="Löffler">Frank E. Löffler</name>
</noCountry>
<country name="États-Unis">
<region name="Géorgie (États-Unis)">
<name sortKey="Hatt, Janet K" sort="Hatt, Janet K" uniqKey="Hatt J" first="Janet K" last="Hatt">Janet K. Hatt</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/DetoxFungiV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001957 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001957 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    DetoxFungiV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:22200549
   |texte=   Quantitative real-time PCR (qPCR) detection chemistries affect enumeration of the Dehalococcoides 16S rRNA gene in groundwater.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:22200549" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a DetoxFungiV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 16:09:04 2020. Site generation: Fri Nov 20 16:15:24 2020